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Preface

At the INEEL researchers and engineers routinely encounter multiphase, multi-component, 
and/or multi-material flows.  Some examples include: 

Reactor coolant flows 
Molten corium flows 
Dynamic compaction of metal powders 
Spray forming and thermal plasma spraying 
Plasma quench reactor 
Subsurface flows, particularly in the vadose zone 
Internal flows within fuel cells 
Black liquor atomization and combustion 
Wheat-chaff classification in combine harvesters 
Generation IV pebble bed, high temperature gas reactor 

The complexity of these flows dictates that they be examined in an averaged sense.  Typically 
one would begin with known (or at least postulated) microscopic flow relations that hold on the 
“small” scale.  These include continuum level conservation of mass, balance of species mass and 
momentum, conservation of energy, and a statement of the second law of thermodynamics often 
in the form of an entropy inequality (such as the Clausius-Duhem inequality).  The averaged or 
macroscopic conservation equations and entropy inequalities are then obtained from the 
microscopic equations through suitable averaging procedures.  At this stage a stronger form of 
the second law may also be postulated for the mixture of phases or materials.  To render the 
evolutionary material flow balance system unique, constitutive equations and phase or material 
interaction relations are introduced from experimental observation, or by postulation, through 
strict enforcement of the constraints or restrictions resulting from the averaged entropy 
inequalities.  These averaged equations form the governing equation system for the dynamic 
evolution of these mixture flows. 

Most commonly, the averaging technique utilized is either volume or time averaging or a 
combination of the two.  The flow restrictions required for volume and time averaging to be 
valid can be severe, and violations of these restrictions are often found.  A more general, less 
restrictive (and far less commonly used) type of averaging known as ensemble averaging can 
also be used to produce the governing equation systems.  In fact volume and time averaging can 
be viewed as special cases of ensemble averaging.  Ensemble averaging is beginning to gain 
some notice, for example the general-purpose multi-material flow simulation code CFDLib 
under continuing developed at the Los Alamos National Laboratory [Kashiwa and Rauenzahn 
1994] is based on an ensemble averaged formulation. 

The purpose of this short note is to give an introduction to the ensemble averaging methodology 
and to show how ensemble averaged balance equations and entropy inequality can be obtained 
from the microscopic balances. 
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Ensemble Averaged Conservation Equations
For Multiphase, Multi-Component,

And Multi-Material Flows 

Introduction

Many important “fluid” flows involve a combination of two or more materials having different 
properties.  The multiple phases or components often exhibit relative motion among the phases 
or material classes.  The microscopic motions of the individual constituents are complex and the 
solution to the micro-level evolutionary equations is difficult.  Characteristic of such flows of 
multi-component materials is an uncertainty in the exact locations of the particular constituents 
at any particular time.  For most practical purposes, it is not possible to exactly predict or 
measure the evolution of the details of such systems, nor is it even necessary or desirable.  
Instead, we are usually interested in more gross features of the motion, or the “average” behavior 
of the system.  Here we present descriptive equations that will predict the evolution of this 
averaged behavior.  Due to the complexities of interfaces and resultant discontinuities in fluid 
properties, as well as from physical scaling issues, it is essential to work with averaged quantities 
and parameters.  We begin by tightening up, or more rigorously defining, our concept of an 
average.  There are several types of averaging.  The published literature predominantly contains 
two types of averaging: volume averaging [Whitaker 1999, Dobran 1991] and time averaging
[Ishii 1975].  Occasionally combinations of the two are used.  However, we utilize a more 
general approach by adopting what is known as ensemble averaging.

When the physical system has a large amount of variability, a natural interpretation of the 
meaning of predictions is in terms of expected values and variances.  If there are many different 
events, or realizations, possible, then the expected value is naturally an “average” over all of 
these events, or the ensemble of realizations.  The ensemble then is the set of all experiments 
with the same boundary- and initial-conditions, with some properties that we would like to 
associate with the mean and distribution of the components and their velocities.  A realization of 
the flow is a possible motion that could have happened.  Implicit in this concept is the intuitive 
idea of a “more likely” and a “less likely” realization in the ensemble.  Therefore, as we shall see 
shortly each ensemble of realizations, corresponding to a given physical situation, has a 
probability measure on subsets of realizations.  The ensemble average is the generalization of the 
elementary idea of adding the values of the variable for each realization, and dividing by the 
number of observations.  The ensemble average then allows the interpretation of phenomena in 
terms of repeatability of multi-component flows. 

One of the nice features of ensemble averaging, as opposed to volume averaging, is that 
ensemble averaging does not require that a control volume contain a large quantity of a particular 
component in any given realization.  Consider the following example, taken directly from Drew 
and Lahey (1993), where the average of a particle-fluid mixture is of interest.  Gas turbines are 
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eroded by particulate matter suspended in the gas stream passing through the inlet and impacting 
on the various parts of the machine, e.g. the turbine blades.  The trajectories of individual 
particles moving through the gas turbine are very complicated, depending on where and when 
the particles enter the inlet of the device.  Such predictions are, fortunately, seldom required.  A 
prediction, however, that is of interest to the designer is the average, or expected values, of the 
particle flux (or the concentration and velocities of particles) near parts in the device that are 
susceptible to erosion.   Since the local concentration of particles is proportional to the 
probability that particles will be at the various points in the device at various times, and the 
particle velocity field will be the mean velocity that the particles will have if they are at that 
position in the device, the design engineer will be able to use this information to assess the places 
where erosion due to particle impact may occur.  Notice it may be that there are no times for 
which there will be many particles in some representative control volume (or representative 
elementary volume, REV).  So, volume averaging, which depends on the concept of having 
many representative particles in the averaging volume at any instant, will fail.  The 
appropriateness of ensemble averaging is obvious. Here the ensemble is the set of motions of a 
single particle through the device, given that it started at a random point at the inlet at a random 
time during the transient flow through the device.  Clearly the solution for the average 
concentration and average velocity gives little information about the behavior of a single particle 
in the device; however, the information is very appropriate for assessing the probability of 
damage to the device.  Similar examples could be given where time averaging will fail, but 
where ensemble averaging is again appropriate. 

The ensemble average is the more fundamentally based than either time or volume averaging.  In 
fact, both time and volume averaging can be viewed as approximations to the ensemble average, 
which can be justified, respectively, for steady or homogeneous flow [Drew and Passman 1999]. 

Ensemble Averaging

A general method is presented here, based on the ensemble averaging concept, for developing 
averaged conservation equations for multiple materials, any one of which may be at point x , at a 
given instant t.  With this procedure, the most likely state at a point (the expected value) will be 
determined simultaneously with which material is most likely to be found at that point.  Imagine 
running an experiment many times and collecting data about the state of the flow at each point x
and time t.  This information could include which material or phase is present, material density, 
velocity, pressure, temperature, concentration, etc.  From this information, one can compute the 
ensemble average.  The ensemble average of a generic property 0Q  of a fluid or material in a 
process is an average over the realizations 

0 0
1

1 RN

,r
rR

Q x,t Q x,t ,
N

 (1) 

where RN  is the number of times the process or experiment is repeated, and is a large number.
Now imagine that many of the realizations are near duplicates, i.e. they are essentially the same 
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state, with N  occurrences.  We can then rewrite the sum over the realizations as a sum over the 
number of states N

0 0
1

0
1

0

1 N

R

N

R

all

Q x,t N x,t , Q
N

N x,t ,
Q

N

Q f x,t , d ,

 (2) 

where
R

N x,t ,
f x ,t ,

N
 is the probability of the state  in the ensemble.  Note that in the 

limit of an infinite number of repetitions of the experiment, with a sum over all of the states, we 
have replaced the summation with an integral form in the definition of the ensemble average.  
More correctly, because 1 0

all

f x ,t , d .  , we refer to f x ,t ,  as the probability density. 

The state is the full thermodynamic description of the matter at a point x  and time t.  For 
example, 

0 0 0 0 0
1 1 1 2 2 2
0 0 0 0 0 0

1 2

,u ,h ,p , ,

,u ,h , ,u ,h , ,

X ,X ,

 (3) 

where:

1
0

kX x,t phase or material indicator function : if material k is present

otherwise

0

0

0

0

0

0

0

0

s

s

s

phase or material density

u phase or material velocity

h phase or material specific enthalpy

p pressure

deviatoric stress

species partial density

u species velocity

h species partial enthalpy ,

with
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0 0

0 0 0 0

0 0 0 0

s

species

s s

species

s s

species

u u

h h .

Other properties may also appear in the above thermodynamic state such as the phase or material 
temperature 0 , the phase or material specific internal energy 0e , and the phase or material 
specific entropy 0s .

In a typical multiphase flow, the ensemble averages of interest may include 

k kMaterial k volume fraction : X

0k kˆMaterial k bulk average density : X

0k
k

k

X
Material k intrinsic average density :

0
s s
k kˆSpecies s in material k bulk average density : X

0
s

ks
k

k

X
Species s in material k intrinsic average density :

0 0 0 0k k
k

k k k

X u X u
Material k velocity : u

ˆ

0 0 0 0k k
k

k k k

X E X E
Material k total energy : E

ˆ

0 0 0 0k k
k

k k k

X s X s
Material k entropy : s

ˆ

0Mean mixture stress : T T

0k
k

k

X T
Mean k material stress : T

0Pressure single pressure model : p p

0k
k

k

X p
Pressure in k material : p .

From a physical viewpoint, the bulk average density of a phase represents a summation of all of 
the density values that occurred for that phase, divided by the total number of experiments run.  
The bulk average density corresponds intuitively to the idea of the mass of phase k  per unit 
volume of mixture, or the observed material density.  On the other hand, the intrinsic average 
density physically corresponds to a summation of all of the density values that occurred for that 
phase, dividing by the number of times in which that phase occurred in the experiments.  The 
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intrinsic average density corresponds intuitively to the idea of the mass of phase k  per unit 
volume of phase k , or the true material density.  Some researchers prefer to work with bulk 
average densities [e.g. Kashiwa and Rauenzahn 1994] while others prefer working with intrinsic 
densities [e.g. Drew and Passman 1999].  This is mostly an issue of convenience, since one can 
easily be converted to the other.  Here we will use intrinsic averages.  Henceforth, when we say 
average, we shall mean intrinsic average unless indicated otherwise. 

For a reasonably broad range of conditions (with common substances), the exact balance 
equations, valid inside each material, are 

0 0 0u Material mass conservation  (4) 

0 0 0 0 0 0 0
s s s s su u u r Species mass conservation  (5) 

0 0 0 0u T g Material momentum balance  (6) 

0 0 0 0 0 0 0 0 0E T u q g u Material energy conservation  (7) 

0 0 0
0 0

0 0

,q
s Material entropy inequality  (8) 

For these microscopic balance laws the material derivative has been used, which is defined as 

0
0 0 0

Q
Q u Q Material derivative .

t
 (9) 

Let us assume that the total variation of f  in the phase space x,t,  is [Kashiwa and 
Rauenzahn 1994]

0 0f f df
u f

t dt
 (10) 

where we are assuming that as we follow a material point through phase space its probability of 
occurrence remains constant.  Various moments of this equation can be formed, first by 
multiplying equation (10) by 0Q , and then averaging this result.  It can be shown [Kashiwa and 
Rauenzahn 1994, here corrected] that the resulting equation is 

0 0 0 0 0 0Q Q u Q Q u .
t

 (11) 

This result is called the moment evolution equation and the details of its derivation are given in 
the Appendix.  The averaged conservation equations are obtained by letting our generic 0Q  be 
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replaced by various “meaningful” functions and then by performing judicious manipulations on 
the equations to bring about physically useful forms of the equation. 

Mass Conservation

By letting 0 0kQ X  in equation (11) we get 

0
0 0 0 0 0 0

0 0 0 0

k
k k k k

k k

X
X u X X X u

t
X X u .

Introducing the pure material (microscopic) mass conservation equation and the definition of 
average results in 

0
k k

k k k ku X .
t

 (12) 

Since we are taking time- and spatial-derivatives of functions that are not smooth, this averaged 
mass conservation equation is to be interpreted in the sense of distributions, or generalized 
functions [Gelfand and Shilov 1964].   Let us examine the right hand side of this equation in 
more detail.  From the definition of a material derivative we know that 

0
k

k k

X
X u X

t

in a generalized function sense.  On the other hand, letting intu  denote the velocity of an interface 
of phase or material k, the material derivative of kX  following the interface velocity vanishes 

0k
int k

X
u X .

t

This result can be easily seen by first considering points not on the interface where either 0kX
or 1kX  and the partial derivatives both vanish, and thus the left side of this equation vanishes 
identically.  For points on the interface, which also move with the interface velocity, the function 

kX  is a jump that remains constant so their material derivatives following the interface vanish.  
Therefore we can write 
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0 0 0

0

0 0

k k
k k int k

int k

X X
X u X u X

t t

u u X ,

 (13) 

and the averaged mass conservation equation becomes 

0 0
k k

k k k int k

mass
k

u u u X
t

.
 (14) 

We note that kX  has the sifting property of the Dirac delta function(al).  Thus the only 
contributors are the material interfaces.  kX  is aligned with the surface unit normal vector 
pointing to phase k  [Drew 1983, Kataoka and Serizawa 1988] 

k k intX n x x ,t .

Thus the mass
k  represents the flux of mass to phase k  from the other phases via the interface, 

usually just referred to as phase change.  With no storage of mass at an interface the mass 
conservation further requires 

1

0
no.of phases

mass
k

k

.  (15) 

At this point, it is convenient to introduce for later use, the concept of interfacial area density of 
component k .  Defined as

k k kˆA n X ,

where kn̂  is the unit external normal to component k , it is the expected value of the ratio of the 
interfacial area (in a small volume) to the (small) volume, in the limit as that volume approaches 
zero.
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Generic Conservation Equation

To more expeditiously derive the other conservation equations, let us first derive the averaged 
balance equation resulting from a generic, microscopic balance equation. Consider the generic, 
microscopic balance equation 

0 0
0 0 0 0 0 0u J g ,

t
 (16) 

or

0 0
0 0 0 0 0 0 0 0

d
u J g .

dt
 (17) 

Equation (16) and (17) hold at each point where sufficient smoothness occurs for the derivatives 
to be taken, as does its generic jump condition 

0 0 0 0int ˆu u J n m  (18) 

where 0  is the conserved quantity, 0J  is a molecular or diffusive flux, 0g  is a source density, 
and m is the interfacial source of 0 .  The symbol  here denotes the jump in the enclosed 
quantity across an interface.  Obviously, these quantities must be added to our state space, e.g. 

0 0 0 0

1 2

,u , ,J ,
.

X , X ,
 (19) 

Let us also define averages of these quantities as 

0 0k
k

k k

X

0k
k

k

X J
J

0 0k
k

k k

X g
g .

By letting 0 0 0kQ X  in equation (11) we get 
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0 0 0 0
0 0 0 0 0 0

0 0
0 0 0 0 0

0 0
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

k k
k k

k k k

k k

k k k

k k k k

k k int k k

X d X
X u X u

t dt

d
X X X u

dt

d
X X u

dt

X X J X g

X J J X X X g

X J J X u u X X g

0 0 0 0 0 0 0k k int kX J X g u u J X .

Introducing the fluctuating velocity 

0k ku u u

into this expression finally results in 

0 0 0 0 0 0

0 0 0 0 0 0

k k k
k k k k k k k k k k k int k

k k k k k k k int k k

Fluct mass int
k k k k k k k k k k

u J X u g u u J X
t

J X u g u u X J X

J J g ,
  (20) 

where 0 0Fluct k k
k

k

X u
J  is the flux of  due to fluctuations in the phase k  velocity, int

k  is 

the effective value of  that is transferred to phase k  from the other phases due to mass 
transfer, or phase change, and k  is a flux of  to phase k  not due to bulk mass transfer from 
the other phases.  This is our generic, averaged balance equation.  To obtain balance at the 
interface, our generic jump balance equation requires the constraint 

1

no.of phases
mass int
k k k

k

M ,  (21) 

where M m  is the expected net effect of all the interfacial -source terms. 
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Species Mass Conservation

The microscopic species mass balance equation can be written as 

0
0 0

s
s s su r ,

t
 (22) 

where 0
s  is the species partial density, 0

su  is the species bulk velocity, and sr  is the generation 
or source of the species due to chemical reactions.  The species mass balance equation is not 
usually written this way because we usually don’t know much about individual species 
velocities.  Instead, it is usually cast as 

0
0 0 0 0 0

s
s s s su u u r

t
 (23) 

because we have (to a certain extent) acquired empirical knowledge of the behavior of the first 
term on the right hand side of this equation, as we shall see shortly.  Let us now recast this 
equation as 

0 0 0
0 0 0 0 0 0 0

0 0 0 0

s s s s
s r

u u u ,
t

 (24) 

which is in the form of our generic, averaged balance equation (20) with the assignments of 

0 0
0 0 0 0 0 0

0 0 0

s s s
s r

J u u g .

Thus the averaged species mass balance equation is 

0 0 0 0 0 0 0 0 0 0 0
s s s s s s s s

k k k k int kX X u X u u X r u u u u X .
t

Again introducing the fluctuating velocity and the definitions of averaged quantities, our final 
form of the averaged species mass balance equation is 

0 0 0

0

0 0

0 0 0

s
s s sk k

k k k k

s
k k

s
int k

s s
k

s
k

u X u u relative species flux
t

X u fluctuational diffusion

u u X phase change

u u X mass exchange

R chemical reactions

 (25) 
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where we have defined the average generation rate in phase k  due to chemical reactions as 
s

ks
k

k

X r
R  . 

Momentum Balance

The averaged momentum balance equation results from the generic, averaged balance equation 
(20) with the assignment of 

0 0 0 0 0 0u J T g g

to give 

Fluct mom int massk k k
k k k k k k k k k k k k k

u
u u T T g u ,

t
 (26) 

where the fluctuating stress Fluct
kT  and the interfacial momentum source mom

k  are given by 

0
0

k k kFluct mom
k k k

k

X u u
T T X .

The averaged interfacial momentum balance constraint (jump condition) is 

1

no.of phases
mom int mass
k k k surface tension

k

u M ,  (27) 

where surface tensionM  is the interfacial momentum source, i.e. surface tension source. 

Energy Conservation

The assignment of 

0 0 0 0 0 0 0 0 0 0 0 0 0
1
2

E e u u J T u q g g u

to the variables of the generic, averaged balance equation (20) gives the averaged energy 
conservation equation
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1 1
2 2

1
2

Fluct Fluct Fluct
k k k k k k k k k k k k k k k k k

Fluct
k k k k k k k k

energy mom int
k k k

mass int int int
k k k k

e u u e u e u u e T T u
t

q q g u

u

e u u ,

  (28) 

where

01
2

k k kFluct
k

k k

X u u
e fluctuation kinetic energy

0 00 1
2

k k k k k kk k kFluct
k

k k k

fluctution internal energy flux fluctuation shear working fluctuation kinetic energy flux

X T u X u u uX u e
q fluctuation energy flux

0 0k
k

k k

X
energy source

0
energy
k kq X interfacial heat source

0 0
mom int
k k ku T u X interfacial work .

The averaged interfacial energy balance constraint (jump condition) is 

1

1
2

no.of phases
energy mom int mass int int int
k k k k k k k

k

u e u u ,  (29) 

where  is the interfacial energy source. 

Entropy Inequality

The local form of the entropy inequality (8), sometimes called the “Second Law of 
Thermodynamics,” is used to place restrictions on the constitutive relations used to give unique 
phase or material behaviors.  With the assignment of 
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0 0
0 0 0 0

0 0

q
s J g

to the variables of the generic, averaged balance relationship (20) the averaged entropy 
inequality results, 

Fluct entropy mass intk k k
k k k k k k k k k k k k k

s
s u S s

t
 (30) 

where

0

0
k

k
k

q
X

entropy flux

0k k kFluct
k

k

X s u
fluctuation entropy flux

0 0

0
k

k
k k

X
S entropy source

0

0

.entropy
k k

q
X interfacial entropy source

This entropy inequality corresponds to what Drew and Passman (1999) call the microscopic 
entropy inequality.  A macroscopic entropy inequality can be obtained by summing inequalities 
(30) over all of the phases or materials present in the mixture [Truesdell 1984 and the other 
authors contained therein].  The macroscopic entropy inequality is useful for placing restrictions 
on the phasic or material interaction constitutive relations. The averaged interfacial entropy 
inequality (jump condition) is 

.

1
0 .

no of phases
entropy mass int
k k k

k

s  (31) 
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Appendix:  Moment Evolution Equation

It is critical that special attention be given to functional dependencies in deriving the moment 
evolution equation.  Let us begin first by defining the ensemble average of some property 0Q  as 

0 0 0 0 0Q x,t Q f x,t , d ,  (A.1) 

where, for example, 0 0 0 0 1 2,u ,e ,X ,X , .  Note that, while 0Q  depends explicitly upon the 

state 0 , its average value 0Q  depends upon position x  and time t , which it acquired from the 

probability function 0f x ,t , .  In fact, 0Q  loses its explicit dependence upon 0  by its very 
definition as an integral over all possible states 0 .

The variation of the probability is 

0
0

f f f
df dt dx d ,

t x

so the time variation of the probability can be written 

0 0
0

df f f
u f .

dt t
 (A.2) 

If we now multiply this equation by 0 0Q  and integrate over 0 -space we get 

0 0 0 0 0 0 0 0 0 0
0

df f f
Q d Q d Q u f d Q d .

dt t
 (A.3) 

Let us now further examine each term of this expression.  Since 0Q  does not depend explicitly 
on time, t ,

0
0 0 0 0

0 0

0

Q ff
Q d d

t t

Q f d
t

Q x,t .
t

Similarly, since 0Q  is independent of x  , we have 
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0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

Q u f d Q f u d

Q u f d Q f u d

Q u f d Q u f d

Q u x,t Q u x,t .

We also know that the 0  are independent of 0  , so 

0

0 0 0 0 0 0
0 0

0 0
0 0 0

0 0

0
0 0 0 0limit of 

0

0
0

0

0 0

0

0
0

0

f f
Q d Q d

Q f Q
d f d

Q
Q f f d

Q

Q d
dt

dQ
Q x,t .

dt

As long as the 0Q  are physically conserved quantities we also have 

0 0 0df
Q d .

dt

Putting all these expressions back into the integral equation above gives the moment evolution 
equation (11) 

0
0 0 0 0 0

Q
Q u Q Q u .

t

Notice:  By comparison with Equation (1.1) of [Kashiwa and Rauenzahn 
1994],

0 0
0 0 0 0 0

0

Q Q Df
Q u Q d ,

t Dt
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theirs should read 

0 0
0 0 0 0 0 0 0

0

0 0 0 0 0

Q Q Df
Q u Q u Q d

t Dt

Df
Q Q u Q d

Dt

to be correct.


